
Page 1 of 32

Ales And Fables: Development Commentary

Project Student: Aimar Goñi

Course: FGCT6011 Final Major Project: Production

Date: 19/05/2025

Repository Link: https://github.com/Aimar-Goni/AG_AIMedievalSim

Itch.io Build Link: Build

Project Outline

AG_AIMedievalSim is an ambitious simulation project developed within Unreal Engine 5, designed to explore complex

AI-driven behaviors. The core concept revolves around creating a multi-agent system where AI characters, or "pawns,"

autonomously manage their needs, execute tasks, and interact with a persistent world. The purpose extends beyond a
simple game; it aims to serve as a flexible framework or plugin-set (AlesAndFables and

CustomMovementPlugin), enabling users to rapidly prototype and deploy sophisticated AI simulations. This

involves pawns that can gather resources like wood, berries, and water, construct buildings, farm, and engage in

leisure activities, all while responding to emergent world states and system defined quests.

[Figure 1. Overview of the AG_AIMedievalSim environment, showcasing AI pawns engaged in various activities,
highlighting the dynamic nature of the simulation.]

The initial goals for AG_AIMedievalSim were multi-faceted:

https://github.com/Aimar-Goni/AG_AIMedievalSim
https://elgoni64.itch.io/medieval-simulation

Page 2 of 32

1. Develop Robust AI Agents:
Create AI characters capable of independent decision-making using Unreal Engine's Behavior Trees and
Blackboards. This included managing core needs and prioritizing actions accordingly.

2. Implement a Dynamic Task & Resource Ecosystem:

Design a system where AI agents can identify resource scarcities, accept gathering or crafting quests, and

interact with various modular workplaces. This involved an inventory system for both agents and storage

locations.

3. Create an Efficient Custom Pathfinding System: Implement a grid-based A* pathfinding solution, optimized for

a potentially large number of agents and dynamic obstacles.

4. Establish a Quest Management and Bidding System: Allow the AMS_AIManager to generate quests based on

resource needs or construction projects, and enable AI agents to evaluate and "bid" on these quests, fostering a

simple economic simulation.

5. Modular Plugin Architecture: Structure the core functionalities into two distinct plugins: AlesAndFables for

the simulation-specific logic (AI characters, manager, quests, medieval assets) and CustomMovementPlugin

for the generic pathfinding subsystem, making the latter potentially reusable in other projects.

Page 3 of 32

[Figure 2. System architecture diagram of AG_AIMedievalSim, showing the interaction between key components

like the AI Manager, individual AI Characters, the Pathfinding Subsystem, and Workplaces.]

Several challenges were anticipated and encountered:

Synchronization and Race Conditions: With multiple AI agents accessing shared resources, ensuring data
integrity and preventing conflicts where multiple AIs target the same depleted resource node was a key concern.

This was particularly relevant for the AMS_WorkpPlacePool and AMS_StorageBuildingPool in

managing available instances.

Pathfinding Complexity and Performance: Developing a custom A* pathfinding system that could handle

dynamic changes and scale to numerous agents without significant performance degradation required careful
optimization of node management and path recalculation logic.

Behavior Tree Complexity: Designing and debugging intricate Behavior Trees for varied AI tasks (gathering,
delivering, building) became increasingly complex. Ensuring logical flow and preventing AI agents from getting

stuck in loops or making irrational decisions was a continuous effort.

Page 4 of 32

[Figure 3. The root of the primary Behavior Tree for AMS_AICharacter . This selector node prioritizes

satisfying needs (e.g., hunger), then active quests, then idle behaviors like wandering. Key Blackboard flags like

bIsHungry and bHasQuest drive the execution flow.]

[CODE SNIPPET: AlesAndFables/Source/AlesAndFables/Public/AI/Characters/MS_AICharacter.h -

AMS_AICharacter::PawnStats_ declaration.]

// AlesAndFables/Source/AlesAndFables/Public/AI/Characters/MS_AICharacter.h

// ...

UPROPERTY(EditAnywhere, Category = "Design|Stats")

TObjectPtr<UMS_PawnStatComponent> PawnStats_;

UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Design|Inventory")

TObjectPtr<UInventoryComponent> Inventory_;

UPROPERTY()

TObjectPtr<UMS_PathfindingSubsystem> PathfindingSubsystem;

// ...

[Figure 4. Header declaration for AMS_AICharacter showing core component pointers like PawnStats_

for managing needs, Inventory_ for resources, and PathfindingSubsystem for navigation. These

components are central to the AI's autonomy.]

Research

Methodology

The development of Ales And Fables was designed to integrate insights from existing games, academic theory, and
technical documentation. The initial phase involved a broad survey of medieval simulation games to identify common

mechanics, AI behavioral patterns, and user expectations. This was followed by a deeper dive into academic literature
on game AI, specifically focusing on agent architecture, decision-making algorithms, and pathfinding techniques.

Concurrently, extensive use was made of Unreal Engine's official documentation, GDC talks, and community forums to

understand best practices for implementing these systems within the engine. This iterative approach game analysis
informing feature design, academic research guiding algorithmic choices, and technical documentation facilitating

implementation allowed for a robust and well-informed development process.

Game Sources

Page 5 of 32

1. RimWorld (Ludeon Studios, 2018)

Description: A colony simulation game driven by AI storytellers, where colonists have individual needs,
skills, and work priorities.

Relevance & Key Takeaways: RimWorld’s pawn management system was highly influential (Ludeon
Studios, 2018). The concept of pawns having distinct needs (hunger, rest, joy) that they autonomously try to

satisfy, alongside a prioritized list of work tasks (Ludeon Studios, 2018), directly inspired the

UMS_PawnStatComponent in Ales And Fables and the logic for AI characters to balance self-

preservation with assigned quests. The way RimWorld handles job assignments provided a model for how

tasks could be generated and picked up by available pawns.

Analysis & Influence: RimWorld uses a sophisticated work prioritization system that players can

configure. While Ales And Fables doesn't offer direct player control over priorities, the underlying principle

of AI evaluating available tasks against their current needs and capabilities was adopted. For example, an
AI in my project with low hunger (PawnStats_->IsHungry() is true) would favor a "Get Food" task over

a "Gather Wood" quest. This is managed in the Behavior Tree using decorators that check Blackboard flags
like bIsHungry and bHasQuest . The CalculateBidValue function in AMS_AICharacter also

reflects this, where needs heavily penalize the bid for new quests.

[Figure 5. A screenshot from RimWorld (Ludeon Studios, 2018) displaying the colonist interface with visible
need bars and work priorities. This visual representation of pawn state directly inspired the

UMS_PawnStatComponent in AG_AIMedievalSim.]

[CODE SNIPPET: AlesAndFables/Source/AlesAndFables/Private/AI/Characters/MS_AICharacter.cpp -

AMS_AICharacter::CalculateBidValue - NeedsPenalty calculation.]

// AlesAndFables/Source/AlesAndFables/Private/AI/Characters/MS_AICharacter.

float AMS_AICharacter::CalculateBidValue(const FQuest& Quest)

{

 // ... other factors ...

 float HungerPenalty = FMath::Clamp(1.0f - (PawnStats_->GetHunger() / 10

 float ThirstPenalty = FMath::Clamp(1.0f - (PawnStats_->GetThirst() / 10

Page 6 of 32

[Figure 6. Code snippet from AMS_AICharacter::CalculateBidValue . This function determines

how "attractive" a quest is to an AI. The NeedsPenalty significantly reduces the bid value if the AI is

hungry or thirsty, mirroring how a RimWorld colonist prioritizes survival.]

2. The Guild 2 / The Guild 3 (4HEAD Studios / GolemLabs)

Description: Life simulation games set in the late Middle Ages, focusing on economic and social

progression, where characters run businesses, engage in politics, and manage daily routines.

Relevance & Key Takeaways: The Guild series (4HEAD Studios / GolemLabs, 2006-2017) excels at
portraying AI characters with daily schedules, moving between home, work, and market. This influenced

the desire for Ales And Fables's characters to have a sense of routine (4HEAD Studios / GolemLabs, 2006-
2017), such as working during the day and potentially seeking shelter or rest at night (using

UMS_BTDecorator_IsNightTime and MS_SleepTask). The concept of production chains in The

Guild, while more complex, inspired the simpler resource flow in my project: gather raw resource -> deliver
to storage/construction.

Analysis & Influence: The Guild’s AI often appears to follow predefined schedules for their roles. I adapted
this by having the AMS_AIManager generate resource-specific quests which AI then bid on. This creates

a more dynamic "work schedule" than a fixed one, driven by systemic needs. The MS_TimeSubsystem

and its OnDayStart / OnNightStart delegates were foundational for allowing AI behavior to change

based on the time of day, such as prioritizing going home to sleep using MS_FindHouse task and

MS_SleepTask when IsNightTime() is true. The AMS_House class itself provides a basic shelter

and occupancy system.

 if (PawnStats_->IsHungry()) HungerPenalty *= 3.0f; // Drastic penalty i

 if (PawnStats_->IsThirsty()) ThirstPenalty *= 3.0f;

 // Combine needs penalties - Higher penalty = lower multiplier, making

 NeedsPenalty = 1.0f / FMath::Max(1.0f, 1.0f + HungerPenalty + ThirstPen

 // ...

 float CalculatedValue = RewardFactor * NeedsPenalty * DistanceFactor;

 return CalculatedValue;

}

Page 7 of 32

[Figure 7. Gameplay screenshot from The Guild 2 (4HEAD Studios, 2006), illustrating AI characters

performing daily routines and moving between various town locations. This informed the desire for

AG_AIMedievalSim's AI to exhibit similar scheduled behaviors, particularly with the day/night cycle.]

[Figure 8. Blueprint graph for UMS_BTDecorator_IsNightTime . This decorator queries the

UMS_TimeSubsystem to check if IsNightTime() is true. It's used in the Behavior Tree to gate

behaviors like sleeping, ensuring AIs only attempt to sleep during appropriate hours, similar to scheduled

activities in The Guild.]

3. Banished (Shining Rock Software, 2014)

Page 8 of 32

Description: A city-building strategy game where players guide a group of exiled travellers to grow and

maintain a settlement. Resource management and citizen well-being are central.

Relevance & Key Takeaways: Banished (Shining Rock Software, 2014) emphasises the importance of

resource logistics and the roles of citizens. The way citizens fetch materials for construction sites (Shining
Rock Software, 2014) was a direct inspiration for the construction quest loop in Ales And Fables:

AMS_AIManager identifies a need, spawns an AMS_ConstructionSite , and generates delivery

quests for resources like wood. AI characters then fetch these from AMS_StorageBuilding and

deliver them.

Analysis & Influence: In Banished, if resources aren't available or if labourers are too busy, construction
halts. This concept of resource dependency is mirrored in my CheckAndInitiateConstruction

logic in AMS_AIManager . The task flow for an AI completing a construction delivery quest involves:

1. Accepting a quest (e.g., Deliver 15 Wood to Site X).
2. Pathing to CentralStorageBuilding (MS_FindNearestStorage).

3. Fetching materials (MS_FetchFromStorage).

4. Pathing to AMS_ConstructionSite .

5. Delivering materials (handled in AMS_AICharacter::OnOverlapBegin with the site).

6. AMS_ConstructionSite updates its CurrentAmount and completes construction if

AmountRequired is met.

[Figure 9. A scene from Banished (Shining Rock Software, 2014) where citizens are actively transporting
resources to a construction site. This logistical loop directly inspired the multi-step construction quest

system in AG_AIMedievalSim.]

[CODE SNIPPET: AlesAndFables/Source/AlesAndFables/Private/AI/Manager/MS_AIManager.cpp -

AMS_AIManager::StartBuildingProject - Delivery quest generation loop.]

// AlesAndFables/Source/AlesAndFables/Private/AI/Manager/MS_AIManager.cpp

void AMS_AIManager::StartBuildingProject(TSubclassOf<AActor> BuildingClassT

{

Page 9 of 32

[Figure 10. Snippet from AMS_AIManager::StartBuildingProject . When a construction project

begins, the AIManager breaks down the total ResourceCost into smaller deliveryQuest chunks

based on DeliveryCarryCapacity . Each chunk becomes a separate quest for AIs to fetch and

deliver, mimicking the incremental resource delivery seen in Banished.]

Academic Sources

1. Millington, I., & Funge, J. Artificial Intelligence for Games .

Summary: This book provides a comprehensive overview of AI techniques used in games, covering

pathfinding, decision-making, movement, and agent architecture.

Relevance & Application: Chapter 4 (Decision Making) and Chapter 5 (Behavior Trees) were particularly

influential (Millington & Funge, 2009). The book's explanation of Behavior Trees nodes like Sequences,
Selectors, Decorators, and Tasks (Millington & Funge, 2009) provided the foundational knowledge for

designing the AI logic in AlesAndFables .

Analysis & Influence: Millington and Funge (2009) emphasise the modularity and reusability of Behavior
Tree tasks and services. This principle (Millington & Funge, 2009) guided the creation of many specific task

nodes in my project, such as MS_FindNearestWorkSite, and FlipBoolTask . Each task is
designed to be a self-contained unit of behaviour. For example,

UMS_BTDecorator_NeedToGatherItems checks if the AI's inventory (AIChar->Inventory_-

>GetResourceAmount(QuestType)) is less than the QuestAmount` on the Blackboard. This

decorator, combined with a Sequence node, ensures the AI only attempts to gather if needed.

 // ... (spawn AMS_ConstructionSite NewSite) ...

 if (NewSite)

 {

 // ... (configure NewSite) ...

 int32 RemainingCost = ResourceCost;

 while (RemainingCost > 0)

 {

 int32 deliveryAmount = FMath::Min(RemainingCost, DeliveryCarryC

 FQuest deliveryQuest(RequiredResource, deliveryAmount, Calculat

 AvailableQuests_.Add(deliveryQuest);

 StartBidTimer(deliveryQuest);

 OnQuestAvailable.Broadcast(deliveryQuest);

 RemainingCost -= deliveryAmount;

 }

 ActiveConstructionDeliveryQuests.Add(NewSite, GeneratedQuestIDs);

 }

 // ...

}

Page 10 of 32

[Figure 11. A conceptual diagram illustrating basic Behavior Tree components (Selector, Sequence, Task,
Decorator) as described by Millington & Funge (2009). This structure forms the basis of AI decision-making

in AG_AIMedievalSim.]

[Figure 12. The UFlipBoolTask ExecuteTask implementation. This simple C++ task allows the Behavior

Tree to toggle a boolean value on the Blackboard, a utility inspired by the modular task design advocated in

"AI for Games."]

2. Patel, A. A Pathfinding for Beginners.*

// AlesAndFables/Source/AlesAndFables/Private/AI/TaskNodes/FlipBoolTask.cpp

EBTNodeResult::Type UFlipBoolTask::ExecuteTask(UBehaviorTreeComponent& Owne

{

 UBlackboardComponent* BlackboardComp = OwnerComp.GetBlackboardComponent

 if (!BlackboardComp || !BoolKey.SelectedKeyName.IsValid())

 {

 return EBTNodeResult::Failed;

 }

 const bool bCurrentValue = BlackboardComp->GetValueAsBool(BoolKey.Selec

 BlackboardComp->SetValueAsBool(BoolKey.SelectedKeyName, !bCurrentValue)

 return EBTNodeResult::Succeeded;

}

Page 11 of 32

Summary: Amit Patel's website offers exceptionally clear explanations and interactive diagrams for

various pathfinding algorithms, especially A*. It breaks down concepts like heuristics, cost functions, and
the open/closed set management.

Relevance & Application: This was the primary guide for implementing the A* algorithm (Patel, n.d.) within
UMS_PathfindingSubsystem::FindPathNodes . The use of TSet<TSharedPtr<FMoveNode>>

OpenSet , TSet<TSharedPtr<FMoveNode>> ClosedSet , TMap<TSharedPtr<FMoveNode>,

float> GScore , and TMap<TSharedPtr<FMoveNode>, float> FScore directly follows Patel's

(n.d.) described A* implementation. The Manhattan distance heuristic was chosen for its efficiency on a

grid.

Analysis & Influence: Patel's guide (n.d.) stresses the importance of an admissible and consistent heuristic

for A* to find the optimal path. My Heuristic function calculates Manhattan distance, a common

heuristic for grid-based pathfinding defined as the sum of the absolute differences of their Cartesian
coordinates (DataCamp, n.d.; Patel, n.d.): FMath::Abs(NodeA->GridPosition.X - NodeB-

>GridPosition.X) + FMath::Abs(NodeA->GridPosition.Y - NodeB-

>GridPosition.Y); . This choice was made because my FMoveNode structures are on a grid, and

Manhattan distance is computationally cheaper than Euclidean while still being admissible for grid

movement (Patel, n.d.), where diagonal moves are not significantly cheaper or disallowed. The ability to
handle blocked nodes (BlockedNodes TSet in UMS_PathfindingSubsystem) and update paths

dynamically (OnPathUpdated delegate) was an extension inspired by the need for a responsive world,

going beyond the basic A* tutorial.

[Figure 13. An illustrative screenshot from Amit Patel's A* Pathfinding guide on RedBlobGames.com,
showing the visualization of the open set, closed set, and path. This clear explanation was crucial for

implementing the A* algorithm in UMS_PathfindingSubsystem .]

[CODE SNIPPET:
CustomMovementPlugin/Source/CustomMovementPlugin/Private/Movement/MS_PathfindingSubsystem.cpp

- UMS_PathfindingSubsystem::FindPathNodes - A* main loop structure.]

// CustomMovementPlugin/Source/CustomMovementPlugin/Private/Movement/MS_Pat

TArray<TSharedPtr<FMoveNode>> UMS_PathfindingSubsystem::FindPathNodes(TShar

{

 // ... (initialization of OpenSet, ClosedSet, GScore, FScore, CameFrom,

Page 12 of 32

[Figure 14. Core A* search loop from UMS_PathfindingSubsystem::FindPathNodes . This

implements the open/closed set management, g-score/f-score calculation, and neighbor exploration as
detailed in Patel's A* guide. The Heuristic function (Manhattan distance) is used for FScore

calculation.]

Documentation Sources

1. . Behavior Trees (Epic Games, n.d.a).

Summary: The official UE documentation provides a comprehensive guide to using Behavior Trees,

including explanations of node types, Blackboards, AI Controllers, and how they integrate with Pawns.

Relevance & Application: This was the go-to resource for the technical implementation (Epic Games,

n.d.a) of all AI behaviors. It guided the creation of custom C++ BT nodes like UFlipBoolTask ,

 while (PriorityQueue.Num() > 0)

 {

 TSharedPtr<FMoveNode> CurrentNode = PriorityQueue[0]; // Get node w

 PriorityQueue.RemoveAt(0);

 if (CurrentNode == GoalNode)

 {

 // Reconstruct path

 // ...

 return Path;

 }

 ClosedSet.Add(CurrentNode);

 for (const TPair<TSharedPtr<FMoveNode>, bool>& NeighborPair : Curre

 {

 TSharedPtr<FMoveNode> Neighbor = NeighborPair.Key;

 bool bIsAccessible = NeighborPair.Value;

 if (!bIsAccessible || ClosedSet.Contains(Neighbor)) continue;

 float TentativeGScore = GScore[CurrentNode] + FVector::Dist(Cur

 if (!GScore.Contains(Neighbor) || TentativeGScore < GScore[Neig

 {

 CameFrom.Add(Neighbor, CurrentNode);

 GScore.Add(Neighbor, TentativeGScore);

 FScore.Add(Neighbor, TentativeGScore + Heuristic(Neighbor,

 if (!PriorityQueue.Contains(Neighbor))

 {

 PriorityQueue.Add(Neighbor);

 }

 }

 }

 PriorityQueue.Sort([&](const TSharedPtr<FMoveNode>& A, const TShare

 }

 return TArray<TSharedPtr<FMoveNode>>(); // No path found

}

Page 13 of 32

decorators like UMS_BTDecorator_IsNightTime , and services like

UMS_BTService_UpdateIdleStatus . The correct way to override functions (Epic Games, n.d.a) like

ExecuteTask was learned directly from these pages.

Analysis & Influence: The documentation's (Epic Games, n.d.a) emphasis on creating custom nodes in C++
for performance and complex logic was key. For example, UMS_FindRandomWanderLocation uses

the UMS_PathfindingSubsystem to find a valid, unblocked node and sets it on the Blackboard. This

involves engine/game-specific logic that is best handled in C++.

The documentation on Blackboard Key Selectors (FBlackboardKeySelector) and how to filter them

(e.g., AddObjectFilter , AddBoolFilter) was essential for making custom nodes configurable

from the Behavior Tree editor. This allowed tasks like UMS_CopyBlackboardValue to be generic.

[Figure 15. A screenshot of the official Unreal Engine Behavior Tree documentation. This resource was

fundamental for understanding how to create and integrate custom C++ nodes.]

[Figure 16. UMS_FindRandomWanderLocation task node as seen in the Behavior Tree editor. It uses

// UMS_FindRandomWanderLocation::ExecuteTask - getting a random node

if (PathSubsystem->GetRandomFreeNode(RandomLocation, RandomGridLocation))

{

 Blackboard->SetValueAsVector(BlackboardKey_TargetLocation.SelectedKeyNa

 // ... path generation logic ...

 return EBTNodeResult::Succeeded;

}

Page 14 of 32

FBlackboardKeySelector for BlackboardKey_TargetLocation , allowing designers to specify

the output key directly in the editor, a feature detailed in UE documentation.]

2. . Custom C++ Pathfinding with A * .(Epic Games Community, n.d.b). Epic Games Forums / Community Wiki (Often

more practical examples here).

Summary: While official docs focus on UE's NavMesh, community tutorials and forum discussions (Epic

Games Community, n.d.b) often detail how to implement fully custom pathfinding systems, including grid

generation, A* logic, and integrating it with AI movement components.

Relevance & Application: Implementing UMS_PathfindingSubsystem and

AMS_MovementNodeMeshStarter required going beyond standard NavMesh. Community examples of

A* (Epic Games Community, n.d.b) in C++ for Unreal, often found on forums or developer blogs, likely

provided patterns for managing the node graph (TMap<FIntPoint, TSharedPtr<FMoveNode>>

NodeMap), neighbour connections, and the A* algorithm itself.

Analysis & Influence: The challenge with custom pathfinding is integrating it smoothly. Community

resources often show how to make a subsystem accessible globally, which is how
PathfindingSubsystem is used by AI characters and the AMS_AIManager . The

AMS_MovementNodeMeshStarter 's approach of raycasting to generate a grid of FMoveNode s and

then connecting neighbours is a common technique discussed in such custom pathfinding tutorials. The
dynamic update, allowing the pathfinding grid to react to in-game changes is an advanced feature that

makes the custom system more robust than a static grid.

[Figure 17. Debug visualization of the pathfinding node grid generated by

AMS_MovementNodeMeshStarter . Nodes are placed based on raycasts, and connections (not shown

here) are established if paths between them are clear. This custom grid approach was informed by

community examples.]

[CODE SNIPPET:

CustomMovementPlugin/Source/CustomMovementPlugin/Private/Movement/MS_PathfindingSubsystem.cpp

- UMS_PathfindingSubsystem::SetNodeBlockedStatus - Broadcasting path updates.]

Page 15 of 32

[Figure 18. Code snippet from UMS_PathfindingSubsystem::SetNodeBlockedStatus . When a

node's traversability changes (e.g., a building is constructed) , this function updates the BlockedNodes

set and broadcasts the OnPathUpdated delegate (Gamma et al., 1994). AI characters subscribed to this

delegate can then trigger a path recalculation if their current path is affected.]

Implementation

Process

The development of Ales And Fables was an iterative process, structured into several key phases, primarily using C++
within Unreal Engine 5, with Blueprints for initial prototyping and some UI elements. Version control was managed

using Git.

1. Phase 1: Core Systems & AI Character Foundation

Decision: Establish the foundational classes.

Implementation:

// CustomMovementPlugin/Source/CustomMovementPlugin/Private/Movement/MS_Pat

void UMS_PathfindingSubsystem::SetNodeBlockedStatus(const FIntPoint& GridPo

{

 // ... (logic to update Node->Neighbors and BlockedNodes set) ...

 bool bStatusChanged = false; // Assume this is set based on actual chan

 // ...

 if (bBlocked)

 {

 if (!BlockedNodes.Contains(GridPosition))

 {

 BlockedNodes.Add(GridPosition);

 bStatusChanged = true;

 // Update neighbors of 'Node' to mark paths to/from it as inacc

 }

 }

 else // Unblocking

 {

 if (BlockedNodes.Remove(GridPosition) > 0) // If an element was act

 {

 bStatusChanged = true;

 // Update neighbors of 'Node' to re-evaluate paths to/from it

 }

 }

 if (bStatusChanged)

 {

 OnPathUpdated.Broadcast(GridPosition); // Notify listeners (like AI

 }

}

Page 16 of 32

Created AlesAndFables (main game logic) and CustomMovementPlugin (pathfinding)

modules.
Developed AMS_AICharacter with basic skeletal structure, linking it to

AMS_AICharacterController .

Implemented UInventoryComponent for managing resources (TMap<ResourceType,

int32> Resources_).

Created UMS_PawnStatComponent to handle needs like hunger and thirst, with a timer for decay

(DecreaseStats) and delegates for state changes (OnStateChanged).

Basic Behavior Tree and Blackboard setup, with SelfActor key (Epic Games, n.d.a).

Tools: Visual Studio for C++, Unreal Engine editor for Blueprint/BT setup.

[Figure 18. Unreal Engine project browser highlighting the AlesAndFables and CustomMovementPlugin

modules, demonstrating the modular architecture established early in development.]

[CODE SNIPPET: AlesAndFables/Source/AlesAndFables/Public/Systems/MS_PawnStatComponent.h -

UMS_PawnStatComponent needs variables and delegates.]

// AlesAndFables/Source/AlesAndFables/Public/Systems/MS_PawnStatComponent.h

// ...

UPROPERTY(EditAnywhere, Category = "Stats")

float Hunger = 100.0f;

UPROPERTY(EditAnywhere, Category = "Stats")

float Thirst = 100.0f;

// ... other needs ...

UPROPERTY(EditAnywhere, Category = "Stats")

float HungryThreshold = 30.0f;

// ... other thresholds ...

DECLARE_DYNAMIC_MULTICAST_DELEGATE(FOnStateChanged);

UPROPERTY(BlueprintAssignable, Category = "Events")

FOnStateChanged OnStateChanged;

// ...

[Figure 19. Key stat variables (Hunger , Thirst) and the OnStateChanged delegate in

UMS_PawnStatComponent.h . This component manages AI needs, broadcasting updates when critical

thresholds are crossed, driving need-fulfillment behaviors.]

Page 17 of 32

2. Phase 2: Pathfinding Implementation

Decision: Implement a custom A* pathfinding solution for greater control over dynamic environments.

Implementation:

Created FMoveNode struct within MS_MovementNode.h .

Developed AMS_MovementNodeMeshStarter to procedurally generate a grid of FMoveNode s

at game start by raycasting down (PerformRaycastAtPosition) and connecting neighbors if

paths are clear (PerformRaycastToPosition).

Implemented UMS_PathfindingSubsystem (as a UGameInstanceSubsystem) to store the

NodeMap and contain the A* algorithm (FindPathNodes , FindPathPoints) (Patel, n.d.c).

This used TSet for open/closed sets and TMap for scores as per A* theory.

Added functionality to BlockNode , UnblockNode , and the OnPathUpdated delegate (Gamma

et al., 1994) to handle dynamic changes.

[Figure 20. Image demonstrating the AMS_MovementNodeMeshStarter 's raycasting process

during initialization. Green lines indicate successful floor detection for node placement, while red
might indicate no suitable surface. (This is illustrative; actual debug may vary).]

[Figure 21. In-game screenshot with pathfinding debug visualization. The yellow sphere represents

the A* path calculated by UMS_PathfindingSubsystem for an AI agent moving towards its

target (red sphere).]

Page 18 of 32

Techniques: A* algorithm (Patel, n.d.c; Millington & Funge, 2009), grid generation, raycasting for obstacle

detection.

3. Phase 3: Workplaces & Basic AI Interaction

Decision: Create modular workplaces and enable AI to interact with them.
Implementation:

Defined AMS_BaseWorkPlace as a base class for all resource spots (e.g., trees, berry bushes) with

ResourceType_ , ResourceAmount_ , and TakeResources() virtual method.

Created derivatives like AMS_TreeWorkPlace , MS_BushWorkPlace .

Implemented AMS_WorkpPlacePool to manage instances of workplaces, including spawning and

deactivating them.

Developed Behavior Tree tasks: MS_FindNearestWorkSite (queries WorkPlacesPool_ on

AMS_AICharacter), MS_GeneratePathToTarget , MS_FollowNodePath ,

MS_PerformWorkAction (calls TakeResources() and adds to AI's Inventory_) (Millington

& Funge, 2009).

AI characters could now find a workplace of a specific type, path to it, "work" for a duration, and

collect resources.

[BLUEPRINT IMAGE: AlesAndFables/Placeables/Interactables/BP_TreeWorkPlace.uasset - Blueprint
for a TreeWorkPlace, showing its StaticMesh and configuration of ResourceType_ and

ResourceAmount_ .]

[Figure 22. Blueprint editor view of BP_TreeWorkPlace (derived from AMS_BaseWorkPlace).

It shows the assigned tree mesh and default properties like ResourceType_ set to WOOD and

ResourceAmount_ set to a default value, making it a configurable resource node.]

4. Phase 4: Quest Management & Economy

Decision: Introduce a system for dynamic task generation and assignment.

Implementation:

Page 19 of 32

Defined FQuest struct (MS_ResourceSystem.h) with ID, type, amount, reward, and optional

target.
Created AMS_AIManager to:

Monitor resource levels in a central storage (CentralStorageBuilding).

[Figure 23. A UI overlay displaying the AMS_AIManager 's status: current central storage

inventory levels.]

Generate gathering quests (GenerateQuestsForResourceType) if resources are low.

Broadcast OnQuestAvailable delegate (Gamma et al., 1994).

Manage a bidding system: AI characters EvaluateQuestAndBid (based on distance, needs,

reward), AIManager ReceiveBid and SelectQuestWinner_Internal after a

BidDuration .

[CODE SNIPPET:
AlesAndFables/Source/AlesAndFables/Private/AI/Manager/MS_AIManager.cpp -

AMS_AIManager::SelectQuestWinner_Internal - Logic for choosing the best bid.]

// AlesAndFables/Source/AlesAndFables/Private/AI/Manager/MS_AIManag

void AMS_AIManager::SelectQuestWinner_Internal(FGuid QuestID)

{

 // ... (find originalQuest) ...

 if (CurrentBids.Contains(QuestID))

 {

 TArray<FBidInfo>& bids = CurrentBids[QuestID];

 AMS_AICharacter* winner = nullptr;

 float highestBid = -1.0f;

 float winningBidTimestamp = FLT_MAX; // For tie-breaking

 for (const FBidInfo& bid : bids)

 {

Page 20 of 32

[Figure 24. AMS_AIManager::SelectQuestWinner_Internal function. This logic

iterates through bids received for a specific QuestID , selecting the winner based on the

highestBid . It includes a tie-breaking mechanism using BidTimestamp . The winning AI

is then assigned the originalQuest .]

Handle quest completion (RequestQuestCompletion).

AI characters' AssignQuest method updates their Blackboard (Epic Games, n.d.a) (e.g.,

bHasQuest , QuestType).

Techniques: Delegate-based event system (Gamma et al., 1994), timer-based bidding.

5. Phase 5: Advanced Behaviors & World Systems

Decision: Expand AI capabilities to include construction, farming, housing, and leisure.

Implementation:

Construction: AMS_ConstructionSite actor. AMS_AIManager initiates construction

(StartBuildingProject), generating delivery quests. AI fetches from storage

(MS_FetchFromStorage), delivers to site. Site completes (CompleteConstruction) and

spawns final building.

 if (bid.Bidder.IsValid()) // Ensure bidder is still val

 {

 if (bid.BidValue > highestBid)

 {

 highestBid = bid.BidValue;

 winner = bid.Bidder.Get();

 winningBidTimestamp = bid.BidTimestamp;

 }

 // Tie-breaking: first come, first served (earlier

 else if (FMath::IsNearlyEqual(bid.BidValue, highest

 {

 winner = bid.Bidder.Get();

 winningBidTimestamp = bid.BidTimestamp;

 }

 }

 }

 if (winner && !winner->AssignedQuest.QuestID.IsValid()) //

 {

 // Assign quest to winner

 winner->AssignQuest(originalQuest);

 // ... (move quest from AvailableQuests_ to AssignedQue

 }

 // ... (cleanup bids and timer) ...

 }

 // ... (handle no bids) ...

}

Page 21 of 32

[Figure 25. An AMS_ConstructionSite in-game, visually represented by scaffolding. An AI

character is shown interacting or moving towards it, fulfilling a delivery quest generated by the
AMS_AIManager .]

Farming: AMS_WheatField with states (EFieldState). AIManager generates quests for

planting, watering, harvesting based on field state and OnFieldNeedsPlanting etc. delegates.

MS_PerformWorkAction handles field-specific actions.

[Figure 26. A visual progression of the AMS_WheatField through its different states

(EFieldState). Each state (Constructed, Planted, Growing, ReadyToHarvest) is represented by a

different static mesh, updated via AMS_WheatField::ChangeState .]

Housing: AMS_House class. AIManager assigns houses (UpdateHousingState). AI uses

MS_FindHouse and MS_SleepTask (triggered by MS_BTDecorator_IsNightTime) to sleep

and regain energy.

Page 22 of 32

Tavern/Leisure: AMS_Tavern . AIManager checks ShouldBuildTavern . AI uses

MS_FindNearestTavern and MS_BuyDrink to increase happiness.

Time & Sky: MS_TimeSubsystem for day/night cycle and MS_SkyController to update

directional light.

[Figure 27. Comparison of the game world's lighting at midday versus nighttime. The

AMS_SkyController adjusts the directional light's rotation, intensity, and color based on the

UMS_TimeSubsystem 's current hour.]

New Approaches

1. Dynamic Pathfinding Grid with On-Demand Node Creation:

Instead of pre-defining all possible movement nodes, the AMS_MovementNodeMeshStarter

dynamically generates an initial grid based on raycasts against "Floor" tagged geometry. More significantly,

systems like AMS_WorkpPlacePool::SpawnWorkplaceAtRandomNode or building construction

(AMS_ConstructionSite) can request the UMS_PathfindingSubsystem to

AddNodeAtPosition . This creates a new FMoveNode at the exact location of the new interactive

object (e.g., a spawned berry bush or a newly built house's door) and connects it to nearby existing nodes.
Why Chosen: This approach offers flexibility for dynamically changing environments (van den Berg et al.,

2006). Pre-baking a huge grid for a large map is inefficient, and static grids don't adapt well to player/AI-

driven construction or procedural content. On-demand node creation ensures pathable access to newly
spawned entities without needing a full grid regeneration.

Evaluation: This was highly successful for interactive objects. It reduced initial setup time and allowed for
more organic placement of dynamic elements. The main challenge was ensuring robust neighbor

connection logic for newly added nodes, especially near the edges of the existing grid or in dense areas.

The PathfindingSubsystem->DeactivateClosestNodes was also an important part of this,

ensuring that when a large building was placed, the underlying general-purpose nodes were correctly

blocked.

// UMS_PathfindingSubsystem::AddNodeAtPosition - Core Logic

FIntPoint GridPosition = FIntPoint(FMath::RoundToInt(Position.X), FMath::R

// ... (create NewNode) ...

NodeMap.Add(GridPosition, NewNode);

// Connect to neighbours within a certain distance

for (auto& Pair : NodeMap) {

 TSharedPtr<FMoveNode> ExistingNode = Pair.Value;

 if (FVector::Dist(NewNode->Position, ExistingNode->Position) <= NodeSep

Page 23 of 32

2. AI Quest Bidding System:

The AMS_AIManager broadcasts available quests, and idle AI characters

(AMS_AICharacter::IsIdle()) can EvaluateQuestAndBid . The bid value

(CalculateBidValue) is a heuristic combining expected reward, distance to task (resource node and

delivery point), and the AI's current needs (hunger, thirst). The AIManager then assigns the quest to the

highest bidder (with tie-breaking).

Why Chosen: This was an attempt to create a more decentralized and emergent task allocation system
than simply assigning tasks to the closest or first available AI (Parsons et al., 2003). It introduces a simple

form of "economic" decision-making and allows AIs that are better suited (e.g., less needy, closer) to
preferentially take tasks.

Evaluation: The system works well for distributing simple gathering and delivery tasks. It prevents one AI

from being overloaded while others are idle. However, CalculateBidValue heuristic needed careful

tuning. Initially, distance was over-weighted, leading to AIs far away never getting quests. The

"NeedsPenalty" was crucial to ensure AIs prioritized survival. A future improvement could be to factor in AI
"skills" or specialized tools if those were implemented.

Testing

User testing and performance profiling were critical throughout the development of Ales And Fables.

1. Unit & Integration Testing (Automated & Manual):

Type: Primarily manual checks during development, with some ad-hoc automated tests using Unreal's

console commands or simple test actors.
Process:

Pathfinding: Tested UMS_PathfindingSubsystem::FindPathPoints (Patel, n.d.c) by

spawning two cubes and requesting a path between them, visualizing with debug lines. Dynamically
placed obstacles to test BlockNode and path recalculation via OnPathUpdated .

AI Needs: Used console commands to manually set AI hunger/thirst (SetPawnStat if I had added

such a command, or by temporarily modifying decrease rates) to observe if they correctly prioritized

 // Check clear path before adding as neighbor

 if (PerformRaycastToPosition(NewNode->Position, ExistingNode->Posit

 NewNode->Neighbors.Add(ExistingNode,true);

 ExistingNode->Neighbors.Add(NewNode, true);

 }

 }

}

// AMS_AICharacter::CalculateBidValue - Simplified

float AMS_AICharacter::CalculateBidValue(const FQuest& Quest) {

 float DistanceFactor = 1.0f / FMath::Max(1.0f, TotalEstimatedDistance /

 float NeedsPenalty = 1.0f / FMath::Max(1.0f, 1.0f + HungerPenalty + Thi

 float RewardFactor = static_cast<float>(Quest.Reward);

 return RewardFactor * NeedsPenalty * DistanceFactor;

}

Page 24 of 32

finding food/water over other tasks. Verified UMS_PawnStatComponent::OnStateChanged

(Gamma et al., 1994) delegate fired.
Quest System: Forced AMS_AIManager to generate specific quests and observed if AI characters

bid, were assigned, and correctly executed the quest steps (e.g., gather wood, deliver to storage).
Log messages were heavily used here.

Feedback/Issues:
Pathfinding sometimes failed if start/end nodes were too close to complex unblocked geometry that
still occluded direct node-to-node raycasts. Solution: Refined PerformRaycastToPosition in

AMS_MovementNodeMeshStarter to use a slightly elevated raycast.

AIs could get stuck in a loop bidding for quests they couldn't immediately start due to low needs.

Solution: Added a stronger NeedsPenalty in CalculateBidValue and ensured the Behavior

Tree had higher priority branches for satisfying critical needs.

2. Performance Profiling:

Type: Used Unreal Engine's built-in profiling tools (Stat Unit , Stat Game , Unreal Insights) (Epic

Games, n.d.d, "Performance and Profiling").

Process: Ran simulations with increasing numbers of AI agents (e.g., 5, 10, 20, 50) and monitored frame

times, game thread, and render thread performance. Focused on:
UMS_PathfindingSubsystem::FindPathNodes (A* execution).

AMS_AICharacter::Tick and Behavior Tree execution.

AMS_AIManager::Tick (quest generation, bid evaluation).

Feedback/Issues & Optimizations:
Initial Issue: A* pathfinding became a bottleneck with >20 agents frequently recalculating paths.

Optimization 1: Cached UMS_PathfindingSubsystem pointer in AMS_AICharacter

instead of getting it from GameInstance every time.
Optimization 2: AI characters only recalculate paths if their current path is invalidated by

OnPathUpdated or if their primary target changes, not on every minor movement

adjustment.

Optimization 3: The NodeMap in UMS_PathfindingSubsystem uses

TSharedPtr<FMoveNode> , which has some overhead. For extreme scale, a plain C-style

array or direct indexing might be faster, but TSharedPtr was kept for easier memory

management and more complex node data.
Initial Issue: Frequent overlap events from AMS_AICharacter::ShopCollision (renamed

from an earlier concept probably) if many AIs were near each other or interactive objects.

Optimization: Ensured collision profiles were set correctly to minimize unnecessary overlap
checks. Overlap logic in OnOverlapBegin was streamlined, e.g., checking

CurrentTarget == OtherActor before processing complex interactions.

Initial Issue: AMS_AIManager::Tick checking all managed resource types every frame for

GenerateQuestsForResourceType .

Optimization: This wasn't a major bottleneck in tests up to 50 AIs, but for hundreds, this loop
could be staggered (e.g., check one resource type per frame, or check less frequently).

DoesIdenticalQuestExist also iterates lists, which could be optimized with TSet for

active quest IDs if it became an issue.

Technical Difficulties

Page 25 of 32

1. Circular Dependencies and Initialization Order:

Difficulty: AMS_AIManager needs references to pools like AMS_StorageBuildingPool . AI

Characters need a reference to AMS_AIManager and

WorkPlacesPool_ / StorageBuldingsPool_ . The PathfindingSubsystem needs its

NodeMap generated by AMS_MovementNodeMeshStarter before it can be used.

Diagnosis: Crashes or null pointer exceptions during BeginPlay if an actor tried to access another

system that wasn't fully initialized.

Resolution:

Heavy reliance on UGameplayStatics::GetActorOfClass or GetSubsystem within

BeginPlay or on-demand, with null checks.

For AMS_MovementNodeMeshStarter and UMS_PathfindingSubsystem , the

OnNodeMapReady delegate (Gamma et al., 1994) was crucial. Systems like

AMS_StorageBuildingPool subscribe to this delegate and only perform actions requiring the

node map (like FindStorageBuildingsOnScene which might call

PathfindingSubsystem->AddNodeAtPosition) after the delegate fires.

For AI accessing AIManager , it's generally safe if AIManager is placed in the level and AI are

spawned later or get it in their BeginPlay .

Reflection: A more formal dependency injection system (Fowler, 2004) or a multi-stage initialization

process for game systems could make this more robust for larger projects.

[CODE SNIPPET:

AlesAndFables/Source/AlesAndFables/Private/Placeables/Buildings/MS_StorageBuildingPool.cpp -
MS_StorageBuildingPool::BeginPlay - Subscribing to OnNodeMapReady.]

// AlesAndFables/Source/AlesAndFables/Private/Placeables/Buildings/MS_Stora

void AMS_StorageBuildingPool::BeginPlay()

{

 Super::BeginPlay();

 // Attempt to find the NodeMeshStarter

 for (TActorIterator<AMS_MovementNodeMeshStarter> It(GetWorld()); It; ++

 {

 AMS_MovementNodeMeshStarter* NodeMeshStarter = *It;

 if (NodeMeshStarter)

 {

 // Bind to the OnNodeMapReady delegate if pathfinding isn't rea

 if (!NodeMeshStarter->bNodeMapReady)

 {

 NodeMeshStarter->OnNodeMapReady.AddDynamic(this, &AMS_Stora

 }

 else // Pathfinding map is already ready, initialize immediatel

 {

 OnNodeMapInitialized();

 }

 break; // Found the starter, no need to continue loop

Page 26 of 32

[Figure 28. AMS_StorageBuildingPool::BeginPlay and OnNodeMapInitialized . The pool

subscribes to AMS_MovementNodeMeshStarter::OnNodeMapReady (Gamma et al., 1994). Critical

initialization logic like FindStorageBuildingsOnScene (which might interact with the pathfinding

grid) is deferred until OnNodeMapInitialized is called, ensuring the pathfinding system is ready. This

delegate-based approach helps manage initialization order dependencies.]

Outcomes

Source Code/Project Files

The complete source code for Ales And Fables is publicly available on GitHub, organized into two primary Unreal

Engine plugins:

Repository Link: (Add link)

1. AlesAndFables Plugin: Contains the core simulation logic, including:

AI Character (MS_AICharacter.h/.cpp): Manages AI state, needs, inventory, quest handling, and

interactions.

AI Controller (MS_AICharacterController.h/.cpp): Hosts the Behavior Tree and Blackboard

components.
AI Manager (MS_AIManager.h/.cpp): Oversees quest generation, bidding, construction projects, and

population/housing.
Workplaces (MS_BaseWorkPlace.h/.cpp , MS_WheatField.h/.cpp , etc.): Define interactive

resource spots and production buildings.

Building & Pool Actors (MS_House.h/.cpp , MS_StorageBuildingPool.h/.cpp ,

MS_WorkpPlacePool.h/.cpp , etc.): Manage instances and availability of structures.

Data Structures (MS_ResourceSystem.h for FQuest , MS_InventoryComponent.h for

ResourceType): Define core data types.

Behavior Tree Nodes (Tasks, Decorators, Services): Located in AI/TaskNodes , AI/Decorators ,

AI/Services subfolders.

2. CustomMovementPlugin Plugin: Contains the reusable pathfinding system:

Pathfinding Subsystem (MS_PathfindingSubsystem.h/.cpp): Implements A* pathfinding and

dynamic node grid management.

 }

 }

}

void AMS_StorageBuildingPool::OnNodeMapInitialized()

{

 UE_LOG(LogTemp, Log, TEXT("StorageBuildingPool: Node Map is ready. Init

 FindStorageBuildingsOnScene(); // Now safe to potentially use pathfindi

}

Page 27 of 32

Node Generation (MS_MovementNodeMeshStarter.h/.cpp): Procedurally creates the initial

pathfinding grid.
Node Data (MS_MovementNode.h for FMoveNode): Defines the structure of a pathfinding node.

The project can be compiled and run using Unreal Engine 5.4.

Build Link

A playable build of Ales And Fables demonstrating the AI behaviors, resource management, and dynamic world can be
downloaded from Itch.io:

Build Link: Build

Instructions to Run:

1. Download the .zip file from the Itch.io page.

2. Extract the contents to a folder on your computer.

3. Run the AG_MedievalSim.exe located in the extracted folder.

4. System Requirements: Windows 10/11, DirectX 11/12 compatible GPU, ~4GB RAM.

Video Demonstration

A video demonstrating key features of Ales And Fables in action is embedded below / available at the following link:

Video Link: https://youtu.be/LFalMgVUfE0

Project Schedule

Card Name Start
Date

Finish
Date Checklist Item Item State

Add New Job Types 2025-
02-03

2025-
05-20 Farm Vegetables complete

Add New Job Types 2025-
02-03

2025-
05-20 Water Vegetables complete

Add New Job Types 2025-
02-03

2025-
05-20 Plant Vegetables complete

Agent Behaviour 2025-
02-03

2025-
05-20 Add economy complete

Agent Behaviour 2025-
02-03

2025-
05-20 Add day/night cicle and sleep complete

Building construction 2025-
03-23

2025-
02-03 complete

Movement system 2025-
02-03

2025-
05-20

Improve the point generation to work inside
homes and with slopes incomplete

Movement system 2025-
02-03

2025-
04-06 Optimize the pathfinding complete

https://elgoni64.itch.io/medieval-simulation
https://youtu.be/LFalMgVUfE0

Page 28 of 32

Card Name Start
Date

Finish
Date Checklist Item Item State

Movement system 2025-
02-03

2025-
04-06

Add dynamic path modification with
enviroment complete

Job assigment 2024-
10-01

2025-
05-20 Implement bidding logic for agents complete

Job assigment 2024-
10-01

2025-
05-20 Prioritize bids based on needs and distance complete

Job assigment 2024-
10-01

2024-
10-19 Create a "Billboard" system for job postings complete

Level design 2024-
10-01

2025-
05-20 Add enviroment complete

Level design 2024-
10-01

2025-
05-20 Add main buildings complete

Level design 2024-
10-01

2024-
10-19 Add task completion static positions complete

Agent Movement 2024-
10-01

2025-
02-03 complete

Agent Movement 2024-
10-01

2025-
02-03 Use eqs to add points to the navmesh complete

Agent Movement 2024-
10-01

2025-
02-03

Write the movement algorithm that thakes
the points and creates roads complete

Agent Movement 2024-
10-01

2024-
10-01 Add the navmesh to the worldmap complete

Core Manager AI 2024-
10-01

2024-
11-04 Design the Manager class complete

Core Manager AI 2024-
10-01

2024-
11-04

Implement job postings based on village
needs complete

Core Manager AI 2024-
10-01

2024-
11-04 Track village resources complete

Village Statistics System 2024-
10-01

2024-
10-29 Update and monitor stats in real-time complete

Village Statistics System 2024-
10-01

2024-
10-29

Track village-wide stats (population,
resources) complete

Base AI Agent Class 2024-
10-01

2024-
10-26 Add functions to update needs over time complete

Base AI Agent Class 2024-
10-01

2024-
10-26

Add properties: needs (hunger, thirst,
energy, money) complete

Base AI Agent Class 2024-
10-01

2024-
10-26

Implement basic agent behaviors (idle, walk,
gather) complete

Base AI Agent Class 2024-
10-01

2024-
10-26 Create Agent C++ class complete

Village resources 2024-
10-01

2024-
10-22 Define resource types (wood, food, water) complete

Page 29 of 32

Card Name Start
Date

Finish
Date Checklist Item Item State

Village resources 2024-
10-01

2024-
10-22 Create UI to display village resources complete

Village resources 2024-
10-01

2024-
10-22 Implement resource gathering and storage complete

Job Classes 2024-
10-01

2024-
10-22 Implement resource collection logic complete

Job Classes 2024-
10-01

2024-
10-22 Implement job actions complete

Job Classes 2024-
10-01

2024-
10-22 Create job classes complete

AI Controller (MANAGER) 2024-
10-01

2024-
10-19 Create an AIController class complete

Agent behaviours 2024-
10-01

2024-
10-07

Implement tasks and conditions for
Behavior Tree complete

Agent behaviours 2024-
10-01

2024-
10-07 Create a basic Behavior Tree complete

Agent behaviours 2024-
10-01

2024-
10-07 Set up Blackboard for agent-specific data complete

Agent Stats natural decline 2024-
10-01

2025-
05-20 complete

AI Agent Base behaviours 2024-
10-01

2025-
05-20 complete

Add Agent Stats 2024-
10-01

2025-
04-06 complete

Basic MANAGER 2024-
10-01

2025-
04-06 complete

BASIC CHARACTER 2024-
09-30

2025-
05-20 complete

Create an AIController to manage
agent decision-making

2024-
09-30

2025-
05-20 complete

Add functions to update needs
over time

2024-
09-30

2024-
10-19 complete

Implement basic agent behaviors
(idle, walk)

2024-
09-30

2025-
05-20 complete

Create a base Agent C++ class 2024-
09-30

2025-
05-20 complete

Add properties: needs (hunger,
thirst, energy, money)

2024-
09-30

2024-
10-19 complete

Reflection

Research Effectiveness

Page 30 of 32

The research for Ales and Fables was highly effective, directly shaping design and implementation.

Game Sources (RimWorld, Banished): These inspired high-level AI design, especially task management and
resource logistics. RimWorld’s mood and work prioritization system influenced the

UMS_PawnStatComponent and AI need-based decisions in the Behavior Tree arguably the most impactful

reference overall.

*Academic Sources (Millington & Funge, Patel’s A Guide):** These provided the theoretical base. Patel’s guide

directly informed the UMS_PathfindingSubsystem , while Millington & Funge clarified Behavior Tree logic,

resulting in cleaner, modular AI systems.

Positive Analysis

1. Modular AI Behavior System: The use of Behavior Trees with custom C++ tasks and Blackboards enabled AI to
handle varied actions (gathering, building, self-care) through reusable components like

MS_PerformWorkAction , which adjusts behavior via Blackboard keys and internal config.

2. Dynamic Pathfinding & Interaction: The UMS_PathfindingSubsystem and dynamic node system allowed AI

to path around changing environments. The OnPathUpdated delegate ensured routes updated automatically

when obstacles appeared or vanished.
3. Emergent Complexity: Interplay between AMS_AIManager (quest generation), AI needs

(UMS_PawnStatComponent), and bidding (CalculateBidValue) led to organic behavior. For example, AIs

with urgent needs would avoid quests, leaving them to others better suited naturally distributing labor.

Negative Analysis

1. Performance Scalability: The custom A* system and Behavior Tree updates limited scalability. While functional

with ~50 AIs, performance may degrade with 100+. Improvements like hierarchical pathfinding, better BT

pruning, and further C++ optimization are needed. AMS_AIManager ’s Tick could also bottleneck with more

resources or projects.

2. AI Clumping & Collision: Unreal’s built-in avoidance works, but large groups still bunch up, especially at shared
access points. A more robust local avoidance or group movement system wasn’t implemented, causing some

jamming.

Next Time

1. Earlier Performance Profiling: Profiling pathfinding and AI decisions earlier would help spot bottlenecks before
layering features.

2. Use GAS: Unreal’s Gameplay Ability System could better manage AI actions and effects (e.g., hunger reducing
work speed) than custom solutions.

3. Advanced Pathfinding: Techniques like jump point search or hierarchical pathfinding would enhance

performance in larger maps.
4. AI Debug Tools: Building in-game tools to visualize AI perception, goals, path queries, or failed Behavior Tree

paths would greatly ease debugging and refinement.

Bibliography

4HEAD Studios / GolemLabs. (2006-2017). The Guild 2 / The Guild 3 [PC Games]. JoWooD Productions / THQ

Nordic.

Page 31 of 32

Botea, A., Müller, M., & Schaeffer, J. (2004). Near Optimal Hierarchical Pathfinding. Journal of Game

Development, 1(1).
DataCamp. (n.d.). Manhattan Distance. Retrieved from https://www.datacamp.com/tutorial/manhattan-distance

(Accessed [Your Access Date])
Epic Games. (n.d.a). Behavior Trees. Unreal Engine Documentation. Retrieved from

https://docs.unrealengine.com/en-US/InteractiveExperiences/ArtificialIntelligence/BehaviorTrees/ (Accessed

[Your Access Date])
Epic Games. (n.d.b). AI Controller. Unreal Engine Documentation. Retrieved from

https://docs.unrealengine.com/en-US/InteractiveExperiences/ArtificialIntelligence/AIController/ (Accessed
[Your Access Date])

Epic Games. (n.d.c). Gameplay Ability System. Unreal Engine Documentation. Retrieved from

https://docs.unrealengine.com/en-US/InteractiveExperiences/GameplayAbilitySystem/ (Accessed [Your
Access Date]) (Note: URL is a guess, replace with actual GAS doc link)

Epic Games. (n.d.d). Performance and Profiling. Unreal Engine Documentation. Retrieved from
https://docs.unrealengine.com/en-US/TestingAndOptimization/PerformanceAndProfiling/ (Accessed [Your

Access Date]) (Note: URL is a guess, replace with actual profiling doc link)

Epic Games Community. (n.d.). Various Forum Posts and Wiki Articles on Custom Pathfinding. Unreal Engine
Forums/Wiki. (Accessed [Your Access Date]) (Note: This is a general citation; be more specific if possible)

Fowler, M. (2004). Inversion of Control Containers and the Dependency Injection pattern. Retrieved from
https://martinfowler.com/articles/injection.html (Accessed [Your Access Date])

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

Harabor, D., & Grastien, A. (2011). Online Graph Pruning for Pathfinding on Grid Maps. In Proceedings of the

Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI'11).
Ludeon Studios. (2018). RimWorld [PC Game]. Ludeon Studios.

Millington, I., & Funge, J. (2009). Artificial Intelligence for Games (2nd ed.). CRC Press.
Parsons, S., Rodriguez-Aguilar, J. A., & Klein, M. (2003). Auctions and bidding: A guide for computer scientists.

ACM Computing Surveys (CSUR), 35(1), 29-79. (Note: This is an example for auction theory; replace if you used a

different specific source or if it's too general).
Patel, A. (n.d.c). A* Pathfinding for Beginners. Red Blob Games. Retrieved from

https://www.redblobgames.com/pathfinding/a-star/introduction.html (Accessed [Your Access Date])
Russell, S. J., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.

Scott, M. L. (2001). Programming Language Pragmatics. Morgan Kaufmann. (Note: This is a general reference for

memory management trade-offs; might be too broad unless a specific concept was drawn).
Shining Rock Software. (2014). Banished [PC Game]. Shining Rock Software LLC.

van den Berg, J., Lin, M., & Manocha, D. (2006). Real-time navigation of independent agents using adaptive
roadmaps. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 57-65).

van den Berg, J., Patil, S., Sewall, J., Manocha, D., & Lin, M. (2011). ORCA: Optimal Reciprocal Collision Avoidance.

IEEE Transactions on Robotics, 27(4), 834-844.

Declared Assets

3D Models & Environment Assets:
Synty Studios: POLYGON - Fantasy Kingdom pack. Used for majority of buildings, props, and character

models. Available at: https://syntystore.com/products/polygon-fantasy-kingdom-pack

Engine: Unreal Engine 5.4.
IDE: Microsoft Visual Studio Community 2022.

https://www.datacamp.com/tutorial/manhattan-distance
https://docs.unrealengine.com/en-US/InteractiveExperiences/ArtificialIntelligence/BehaviorTrees/
https://docs.unrealengine.com/en-US/InteractiveExperiences/ArtificialIntelligence/AIController/
https://docs.unrealengine.com/en-US/InteractiveExperiences/GameplayAbilitySystem/
https://docs.unrealengine.com/en-US/TestingAndOptimization/PerformanceAndProfiling/
https://martinfowler.com/articles/injection.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://syntystore.com/products/polygon-fantasy-kingdom-pack

Page 32 of 32

Version Control: Git, hosted on GitHub.

AI Tools:
ChatGPT (OpenAI): Used for brainstorming solutions to specific C++ coding problems, generating

boilerplate code for simple UObject classes or functions, and assisting in rephrasing/clarifying text for this
development commentary. For example, I might have asked "How to properly override TickTask in a latent

BTTaskNode in Unreal Engine C++?" or "Suggest alternative ways to structure a resource management

system." The AI-generated code/suggestions were always reviewed, adapted, and integrated manually.
External Code/Libraries: All C++ code for AI logic, pathfinding, resource systems, and gameplay mechanics

within the AlesAndFables and CustomMovementPlugin plugins was written by myself, Aimar Goñi, with

the aforementioned AI tool assistance for specific snippets or problem-solving. No external pre-existing game-

logic libraries were directly integrated. Standard Unreal Engine modules were used as expected.

